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Abstract. Program certification techniques formally show that pro-
grams satisfy certain safety policies. They rely on the correctness of the
safety policy which has to be established externally. In this paper we
investigate an approach to show the correctness of safety policies which
are formulated as a set of Hoare-style inference rules on the source code
level. We develop a framework which is generic with respect to safety
policies and which allows us to establish that proving the safety of a pro-
gram statically guarantees dynamic safety, i.e., that the program never
violates the safety property during its execution. We demonstrate our
framework by proving safety policies for memory access safety and mem-
ory read/write limitations to be sound and complete. Finally, we formu-
late a set of generic safety inference rules which serve as the blueprint
for the implementation of a verification condition generator which can
be parameterized with different safety policies and identify conditions on
appropriate safety policies.
Keywords. Program verification, Hoare logic, program safety, code cer-
tification, proof-carrying code

1 Introduction

Program certification techniques like proof-carrying code (PCC) [13] use formal
reasoning techniques to show that programs satisfy certain safety policies like, for
example, memory safety (i.e., that they do not access out-of-bounds memory),
rather than full functional correctness.

In effect, these techniques shift the trust burden from the original programs
to the certification system: instead of having to trust arbitrary programs to be
safe, users have to trust the certifier to be correct. However, since a certifier is
itself a complex program, this is still a large burden. It is eased by a separation
of the components into a small trusted computing base (TCB) and a larger but
untrusted support environment. In the original PCC approach [13], a compiler
first translates an untrusted source program into an annotated machine program,
to which a verification condition generator (VCG) then applies a safety policy,
formulated as a set of Hoare rules. This produces a set of proof obligations, which
are processed by a theorem prover; the resulting proofs are finally scrutinized by
a proof checker. In this case, the TCB includes only the safety policy, the VCG,
and the proof checker, but not the much larger prover or the compiler itself.



However, the fact that the safety policy remains part of TCB turns out to
be the Achilles heel of the approach, both for theoretical and practical reasons.
On the theoretical side, if the rules are unsound or do not exactly formalize the
intuitive notion of safety, “all bets are off” [11], i.e., even a safety proof does not
guarantee that the program is actually safe. On the practical side, since a safety
policy can consist of a collection of fairly complex Hoare rules, it is as liable to
error as any other component of the certifier. Moreover, the VCG and the proof
checker can be reused essentially unchanged for different safety policies and can
thus be hardened over time, but the Hoare rules change with each new safety
policy.

Recent research has thus concentrated on ways to guarantee the correctness of
safety policies or, more generally, to move them out out of the TCB. Proposed
approaches include type-preserving compilation [11], foundational PCC [2, 7],
and reduction to core safety policies [14].

However, all these approaches work on the object code level, and cannot di-
rectly be extended to safety policies which are formulated on the source code
level. Here, we investigate an approach to show the correctness of such source-
level safety policies. Our goal is to develop a generic framework which allows
us to establish that proving the safety of a source program statically, using a
safety policy formulated as a set of Hoare-style inference rules, guarantees dy-
namic safety, namely that the program never violates the safety property during
its execution.1 We explicitly separate the formalisation of the safety properties
from the operational semantics: a program can be unsafe even if its execution
does not raise an uncaught exception; conversely, a program can still be safe
(w.r.t. a specific property) if an (unrelated) exception occurs. We also explicitly
distinguish between safety properties (which are operational characterizations)
and safety policies (which are logical characterizations).

Our interest in source-level policies has a number of reasons. (i) Programmers
make errors on the source code level, so showing safety on the source code level
seems not only to be more natural, it also makes it easier to pinpoint the errors.
(ii) Some safety policies can be formulated more naturally (e.g., initialization-
before-use) or only (e.g., loop variable restrictions) on the source code level.2 In
particular, high-level domain-specific policies such as frame safety [10] are in-
herently source level. (iii) Source-level certification is complementary to object-
level approaches like PCC. In fact, to ensure that the compilation step does not
compromise the demonstrated safety policy, source-level certification should be
followed by object-level certification. However, explicit source-level certification
provides a separation of concerns as different safety policies can be applied at
different levels of abstraction. (iv) Formal software certification processes (e.g.,
DO-178B) usually also cover source code level, so certification support has to
work on that level. (v) Finally, we are interested in the combination of certi-

1 Provided that the compiler preserves the property, of course. See below for a more
detailed discussion of this.

2 This is related to the use of certification to enforce syntactic restrictions and coding
standards.



fication and program synthesis [20], to use certification (in a roundabout way)
to increase confidence in our synthesis system, which generates source code and
not object code.

The main contributions of this paper are as follows.

– We develop a general notion of safety property: we distinguish stateless prop-
erties, where the safety of subcommands can be considered in isolation, and
stateful properties, where commands affect the safety of other commands
through their effect on the program environment.

– We develop a semantic definition of safety, which lets us reason about the
soundness and completeness of our safety policies.

– We give a generic method of extending Hoare rules to incorporate an arbi-
trary safety property. In particular, our framework can serve as the basis for
the implementation of a generic VCG.

In Section 2, we develop the basic theory of stateless safety properties, and
then extend this in Section 3 to some examples of stateful safety. In Section 4
we present a general account of safety. Finally, Sections 5 and 6 discuss related
work and draw some conclusions. Throughout this paper we assume a working
familiarity with Hoare-style program correctness proofs (see [12], for example).

2 Stateless Safety Properties

For the beginning, we will restrict our attention to deliberately simplistic lan-
guages and properties. The syntax of our first language, L0, of while-programs
is shown in Figure 1; it uses the unspecified sets Var and Const of variables and
literal constants.

Cmd ::= skip Expr ::= Const
| Var := Expr | Var
| if Expr then Cmd | Expr * Expr
| while Expr do Cmd | Expr / Expr
| Cmd ; Cmd | Expr + Expr

| Expr - Expr
| Expr = Expr

Fig. 1. Syntax of while-language L0

Our initial safety property is an example of operator safety, i.e., operators
are only applied to arguments within their respective domains. For L0, this boils
down to the question of whether divisors are non-zero. However, even for this
simple case we cannot naively define the safety of commands in terms of the
safety of their subexpressions. Consider, for example, the commands

if false then x:=x+1/0 while true do skip; x:=x+1/0



which contain unsafe subexpressions but which we would nevertheless regard as
safe (w.r.t. operator safety) because the division-by-zero exception will never be
raised. Consider also the sequence x:=y; w:=1/x where safety of the subexpres-
sions is not sufficient either because this does not incorporate the information
that the division 1/x is performed when x is bound to the value of y. Hence, we
need an analysis of safety which takes into account the (operational) semantics
of the programs.

2.1 Formulation of Safety Properties

A safety property is an operational characterization of the fact that “a program
does not go wrong.” We formalize safety properties as judgements of the form
η � c safe, i.e., the command c ∈ Cmd is safe under the environment η ∈ Env .
As usual, we use environments η : Var ⇀ Val⊥ to record value bindings for
the variables. Note that we use the bottom element ⊥ only as an operational
concept to denote and propagate the result of an undefined computation, but
not to denote (un-) safety. In particular, a command can still be safe under an
environment which contains a binding x 7→ ⊥; for example, y:=x+1 is obviously
still safe w.r.t. operator safety (i.e., division-by-zero free) simply because it does
not contain any occurrence of the division operator. Conversely, unsafety does
not necessarily manifest itself in a binding x 7→ ⊥.

We can then define the judgement safeop which formalizes operator safety for
L0-expressions in the expected way, as shown in Figure 2. We use the notation
[[e]]η to denote evaluation of an expression e ∈ Expr in an environment η.

η � c safeop

η � x safeop

η � e1 op e2 safeop iff η � e1 safeop and η � e2 safeop and op ∈ {*, +, -, =}
η � e1 / e2 safeop iff η � e1 safeop and η � e2 safeop and [[e2 ]]η 6= 0

Fig. 2. Operator safety for L0-expressions

Extending operator safety to commands requires an operational semantics
for the commands; here, we assume the standard single-step operational se-
mantics 〈c, η〉 ⇒ 〈c′, η′〉 for while-programs.34 However, there are two different
approaches to an extension. The first approach factors safety into two different

3 〈x := e, η〉 ⇒ 〈skip, η ⊕ {x 7→ [[e]]η}〉,
〈skip ; c2, η〉 ⇒ 〈c2, η〉,
〈c1 ; c2, η〉 ⇒ 〈c′1 ; c2, η

′〉 if 〈c1, η〉 ⇒ 〈c′1, η′〉,
〈if b then c, η〉 ⇒ 〈c, η〉 if [[b]]η = true,
〈if b then c, η〉 ⇒ 〈skip, η〉 if [[b]]η = false,
〈while b do c, η〉 ⇒ 〈if b then (c; while b do c), η〉

4 We also use 〈c, η〉 ⇓ η′ to denote the result of a terminating evaluation of c, i.e.,
〈c, η〉 ⇓ η′ iff 〈c, η〉 ⇒∗ 〈skip, η′〉.



judgements, safestateop and safeop (cf. Figure 3), where η � c safestateop formal-
izes the intuition that the immediately next command is safe to execute (i.e., all
of the expressions which it would evaluate immediately are safe) and the reduc-
tion relation restricts the application of safestateop to reachable commands and
environments only. Hence, we have η � while true do skip; x:=1/0 safeop, as
expected. This approach essentially mirrors the definition of what is called the
safety policy in the syntactic FPCC-approach of Hamid et al. [7].

η � skip safestateop

η � x := e safestateop iff η � e safeop

η � if b then c safestateop iff η � b safeop

η � while b do c safestateop iff η � b safeop

η � c1;c2 safestateop iff η � c1 safestateop

η � c safeop iff ∀〈c, η〉 ⇒∗ 〈c′, η′〉 · η′ � c′ safestateop

Fig. 3. Operator safety for L0-commands

The second approach directly integrates the formulation of the safestateop-
judgement into the operational semantics and has thus more of an abstract
interpretation flavor (cf. Figure 4).

η � skip ŝafeop

η � x := e ŝafeop iff η � e safeop

η � if b then c ŝafeop iff η � b safeop and [[b]]η = true implies

η � c ŝafeop

η � while b do c ŝafeop iff η � b safeop and [[b]]η = true implies (η � c ŝafeop and

〈c, η〉 ⇓ η′ implies η′ � while b do c ŝafeop)

η � c1;c2 ŝafeop iff η � c1 ŝafeop and 〈c1, η〉 ⇓ η′ implies η′ � c2 ŝafeop.

Fig. 4. Operator safety for L0-commands (structural definition)

For this alternative definition ŝafeop we first show that safety is preserved by
reduction; in analogy to subject reduction we call this property safety reduction.
Note that safety reduction holds trivially for safeop as defined in Figure 3.

Lemma 1. (Safety Reduction) η � c ŝafeop and 〈c, η〉 ⇒ 〈c′, η′〉 implies η′ �
c′ ŝafeop.

Proof: Straightforward induction over commands.



We can then show that both definitions are in fact equivalent. This is quite
useful because the operational definition (ŝafe) is what we intuitively want but
most proofs use the inductive definition (safestate).

Lemma 2. For all η, c: η � c ŝafeop iff η � c safeop.

Proof: Use Lemma 1, and the fact that η � c ŝafeop implies η � c safestateop.
Both Lemma 1 and Lemma 2 are independent of the particular safety judge-

ment and hold as long as command safety is derived from expression safety in
the way described in Figure 4.

In the following we discuss arbitrary safety properties, which can be any
mathematical relation between environments and expressions. We reserve the
use of safety judgement for the semantic clauses defining the property. For com-
mands, we define a safety property to be any relation, � safe ⊆ Env×Cmd ,
which is defined from expression safety, according to Figure 4 (cf. Definition 5
for the stateful case).

2.2 Formulation of Safety Policies

A safety policy is a set of proof rules and auxiliary definitions which are designed
to show that safe programs satisfy the safety property of interest. The intention
is that a safety policy enforces a particular safety property (see Section 2.1). For
source-level safety properties, the proof rules can be formalized concisely using
the usual Hoare triples P {c} Q. We also use the notation `safe P {c} Q to
denote derivability of Hoare triples, given a set of Hoare rules. Figure 5 shows the
Hoare rules for operator safety. The rules are a slight modification of the standard
ones; the (assign) axiom requires safety of the right-hand side expression, and
the (if ) and (while) rules require the additional hypothesis that the guard is
safe under the precondition P . Figure 6 shows the definition of the auxiliary
predicate safeop used in the rules; note that safeop is not a judgement but a
function which maps expressions into formulae.

We also need to modify the standard interpretation of Hoare triples (i.e.,
η � P {c} Q iff η � P and 〈c, η〉 ⇓ η′ together imply η′ � Q) to take a safety
judgement into account.

Definition 1. �safe P {c} Q holds iff for all η ∈ Env, if η � P , then η � c safe,
and if 〈c, η〉 ⇓ η′, then η′ � Q.

Note that the proof rules inherit an underlying logic from a system given
separately; in particular, they do not say anything about the definedness of the
formulae P and Q used in the Hoare triples (e.g., �safe true {x := 0} 1/x 6= 100
holds). Hence, logical definedness is unconnected to the safety policy.

2.3 Soundness and Completeness of Safety Policies

The crucial task is now to show that the proof rules of the safety policy are
sound and complete w.r.t. the safety property of interest. Since we have defined



(skip)
Q {skip} Q

(assign)
Q[e/x] ∧ safeop(e) {x := e} Q

(if )
P ⇒ safeop(b) b ∧ P {c} Q ¬b ∧ P ⇒ Q

P {if b then c} Q

(while)
P ⇒ safeop(b) b ∧ P {c} P

P {while b do c} ¬b ∧ P

(comp)
P {c1} R R {c2} Q

P {c1 ; c2} Q

(cons)
P ⇒ P ′ P ′ {c} Q′ Q′ ⇒ Q

P {c} Q

Fig. 5. Hoare rules for L0 operator safety

safeop(e) =


true if e ∈ Var or e ∈ Const
safeop(e1) ∧ safeop(e2) if e ≡ e1 op e2, op ∈ {*, +, -, =}
safeop(e1) ∧ safeop(e2) ∧ e2 6= 0 if e ≡ e1/e2

Fig. 6. Safety formula for L0 operator safety

semantic safety of a command with respect to an environment we need to show
a theorem of the form η � c safe iff `safe P {c} true, for some P such that
η � P . The role of the proof obligation P is to collect all the safety information
for c in η.

For the only if direction of the proof (i.e., completeness), we need the notion
of expressivity [12] which postulates the existence of formulae which characterise
particular sets of environments. More precisely, we assume the existence of weak-
est preconditions wpc for all statements. Formally, a (first-order) language L is
called expressive if, for all commands c ∈ Cmd and postconditions Q, there exists
a formula wpc(c,Q) such that η � wpc(c,Q) iff 〈c, η〉 ⇓ η′ implies η′ � Q. This is
a nontrivial assumption as there is no reason why an arbitrary semantic condi-
tion should be expressible by a (first-order) formula. However, the assumption
is required for proof purposes only and in practice wpcs can often be computed
automatically. As usual, while-loops pose the real problem, and here loop in-
variants have to be given explicitly.

Unfortunately, this standard definition of expressivity is not strong enough
to show safety in all cases. Consider the example

i:=0;
while true do
x:=1/(a-i); i:=i+1



which is safe in environments where a is negative but where the weakest precon-
dition of the non-terminating loop is true, telling us nothing about its safety.
Indeed, examples can be given which have no first-order wspc. We thus in-
troduce the notion of weakest safety precondition (wspc) to characterize safe
environments.

Definition 2. (Expressivity for commands) A command c ∈ Cmd is called ex-
pressible w.r.t. a safety judgement safe if, for all postconditions Q, there exists
a formula wspc(c,Q) such that

η � wspc(c,Q) iff (η � c safe and 〈c, η〉 ⇓ η′ implies η′ � Q).

A language L is called expressive for commands w.r.t. a safety judgement safe if
all commands are expressible.

Now a consequence of the definition of wspc, is that all intermediate com-
mands are safe, by safety reduction. However, since there is no useful notion of
safe environment, it is not sufficient to simply consider the environments in which
c reduces to a safe environment, or for which all intermediate environments are
safe.

We also need to extend expressivity to the expression level; here it assumes
the existence of safety formulae, safe (e), compatible with the safety judgement
safe.

Definition 3. (Expressivity for expressions) An expression e ∈ Expr is called
expressible w.r.t. a safety judgement safe if there exists a formula safe (e) such
that η � e safe iff η � safe (e).

By abuse of notation we will also call a given safety predicate safe ( ) expres-
sive for a safety judgement safe if it satisfies the condition of Definition 3. It is
then easy to show that safeop is expressive for safeop.

Lemma 3. For all e ∈ Expr, η � e safeop iff η � safeop(e).

Proof: Straightforward induction over e.

We can now characterize the weakest safety preconditions wspc (w.r.t. oper-
ator safety) for each command of L0. Lemma 4 thus gives a recursive (but due
to the while-case unfortunately not well-founded) definition of wspc.

Lemma 4. Assuming all formulae exist, the following equivalences are sound:

1. wspc(skip, Q) ⇐⇒ wpc(skip, Q)
2. wspc(x:= e,Q) ⇐⇒ safeop(e) ∧ wpc(x:= e,Q)
3. wspc(if b then c,Q) ⇐⇒ safeop(b) ∧ (b ⇒ wspc(c,Q)) ∧ (¬b ⇒ Q)
4. wspc(while b do c,Q) ⇐⇒ safeop(b)∧ (b ⇒ wspc(c,wspc(while b do c,Q)))∧

(¬b ⇒ Q)
5. wspc(c1;c2, Q) ⇐⇒ wspc(c1,wspc(c2, Q)))



Proof: Cases 1. and 2. are immediate from the definitions. The other cases require
some work.

3. By Definition 2, η � wspc(if b then c,Q) iff (i) η � if b then c safeop and
(ii) 〈if b then c, η〉 ⇓ η′ implies η′ � Q. By Lemma 2 and definition (cf. Figure 4),
(i) is equivalent to η � b safeop and [[b]] = true implies η � c safeop. If [[b]] = true
then (ii) is equivalent to 〈c, η〉 ⇓ η′ implies η′ � Q which is the definition of
η � wpc(c,Q). If [[b]] = false then (ii) is equivalent to η � Q. Regrouping, we get
(iii) η � b safeop, (iv) [[b]] = true implies (η � c safeop and η � wpc(c,Q)), and (v)
[[b]] = false implies η � Q, which is the interpretation of the right hand formula.

4. By Definition 2, η � wspc(while b do c,Q) iff (i) η � while b do c safeop

and (ii) 〈while b do c, η〉 ⇓ η′ implies η′ � Q. By Lemma 2 and definition (cf.
Figure 4), (i) is equivalent to η � b safeop and [[b]] = true implies η � c safeop and
[[b]] = true and 〈c, η〉 ⇓ η′′ imply η′′ � while b do c safeop. If [[b]] = true and the
loop terminates, (ii) is equivalent to the existence of an η′′ with 〈c, η〉 ⇓ η′′ and
〈while b do c, η′′〉 ⇓ η′ � Q, i.e., if 〈c, η〉 ⇓ η′′, then η′′ � wpc(while b do c,Q).
If the loop does not terminate, (ii) is vacuously true. If [[b]] = false, then the
loop terminates immediately, so (ii) is equivalent to η � Q. Regrouping, we get
(iii) η � b safeop, (iv) [[b]] = true implies η � c safeop, and if 〈c, η〉 ⇓ η′′, then
η′′ � wspc(while b do c,Q), and (v) [[b]] = false implies η � Q, which is the
interpretation of the right hand formula.

5. By Definition 2, η � wspc(c1,wspc(c2, Q)) iff (i) η � c1 safeop and (ii)
η � wpc(c1,wspc(c2, Q)). Expanding this, we have 〈c1, η〉 ⇓ η′ implies η′ �
c2 safeop and η′ � wpc(c2, Q). This is then equivalent to η � c1; c2 safeop and
η � wpc(c1; c2, Q), so we’re done.

The preceding lemma does not give a constructive definition of wspc, because
of the recursion in the while-case.

Lemma 5. (wspc properties) For all formulas P and Q, and commands, c:

1. �safe wspc(c,Q) {c} Q.
2. �safe P {c} Q implies P ⇒ wspc(c,Q).

Proof: 1. By definition of wspc. 2. The implication is clearly true in the model.
Provability follows from completeness of the underlying logic.

We can now extend the definition of safety formulae to commands via a
reduction to wspc. We define safeop(c) = wspc(c, true), which also yields �safe

safeop(c) {c} true, for all c ∈ Cmd , as a special case of Lemma 5. Moreover, we
clearly have η � c safeop iff η � safeop(c), so can factor wspc into a functional
component expressed in terms of the standard precondition wpc and a safety
component safeop(c).

Proposition 1. wspc(c,Q) ⇐⇒ wpc(c,Q) ∧ safeop(c).

Note that we choose not to define wspc this way i.e., by giving a direct defi-
nition of safeop(c). The reason is that checking safety requires a similar recursive
descent over the structure of a command, similar to computing the wpc, so it is



more natural to combine them into a single definition. Similarly, it is not possi-
ble to give a neat definition of wspc from wpc and safety of expressions, for the
reasons given in Section 2.

Theorem 1. Suppose c is expressible. Then, �safe P {c} Q iff `safe P {c} Q.

Proof: Soundness is by an easy induction over the derivation. For completeness,
the proof structure follows that of the standard (relative) completeness proof for
Hoare logic, using expressivity to get, in our case, the weakest safety precondi-
tions which are needed to make the proof go through. The most interesting cases
are for conditionals and while-loops.
(if) Let R denote wspc(if b then c,Q). Then:

R ⇒ safe (b)
(1)

b ∧R ⇒ wspc(c, Q)
(2)

wspc(c, Q) {c} Q
(3)

b ∧R {c} Q ¬b ∧R ⇒ Q
(4)

R {if b then c} Q P ⇒ R
(5)

P {if b then c} Q

The first, second, and fourth hypotheses follow from Lemma 4, the third and
fifth follow from Lemma 5 (parts 1 and 2, respectively).
(while) Suppose �safe P {while b do c} Q. Let R denote wspc(while b do c,Q).
Then:

R ⇒ safeop(b)
(1)

b ∧R ⇒ wspc(c, R)
(2)

wspc(c, R) {c} R
(3)

b ∧R {c} R

R {while b do c} ¬b ∧R ¬b ∧R ⇒ Q
(4)

R {while b do c} Q P ⇒ R
(5)

P {while b do c} Q

The first, second and fourth hypothesis follow from Lemma 4, the third follows
from the inductive hypothesis on c and Lemma 5(1); and the fifth follows from
Lemma 5(2).

Theorem 2. Assume expressivity. Then,

η � c safeop iff `safe φ {c} true

for some φ such that η � φ.

Proof: We show the left-to-right implication. We know that �safe safeop(c) {c} true
by Lemma 5. Hence, by Theorem 1, we have that `safe safeop(c) {c} true, and
since η � c safeop by assumption, expressivity gives us η � safeop(c).



At this point it might look like we have built a formidable machinery to prove
some less than formidable properties. However, subtle variations of the Hoare
rules are possible, and finding the “right” rules (much less proving that they are
right) is difficult without a formal framework like the one we have developed
here. Consider, for example, the following variant of the if -rule

(if ′)
safeop(b) ∧ b ∧ P {c} Q safeop(b) ∧ ¬b ∧ P ⇒ Q

P {if b then c} Q

in which the safety formula is “inlined” into the two hypotheses and not sep-
arated into a third hypothesis (cf. Figure 5). However, this rule variant allows
safety information to be used to determine the control flow, which makes it
potentially unsound. It allows us to derive the triple

true {if 1/x 6= 1 then if x 6= 0 then y:= 3} x = 1 ∨ y = 3

which on the surface seems reasonable: either x is one and nothing can be con-
cluded about y, or x is non-zero and y is assigned, or x is zero, the outer guard is
undefined, and hence, the statement causes an exception and does not terminate
properly. However, it is exactly this third alternative which causes the trouble:
if division by zero does not cause an exception but returns a defined value (e.g.,
NaN, “not a number”), we can no longer conclude at the inner guard that the
safety formula on the outer guard holds.

We note in passing that the rules in this paper are different from those in
[20]. However, we believe that the rules shown here are easier to implement and
apply in practice.

3 Stateful Safety Properties

We now extend our framework to deal with more interesting safety properties.
Our basic idea is to introduce auxiliary (or shadow) variables which appear only
in formulas but not in the program itself: for each variable x ∈ Var we introduce a
distinct shadow variable x ∈ Var which records the necessary safety information
associated with x. We also introduce shadow environments η : Var ⇀ Val , where
the shadow domain Val depends on the safety property of interest, and extend
the operational semantics to include the effects the different commands have on
the values of the shadow variables. We then modify the Hoare rules to ensure
that x actually “shadows” x, i.e., that the information recorded in x is always
current.

We already adopted part of this methodology in [20]; one motivation for the
present work is to formally justify it. The methodology itself is quite flexible and
allows us to encode different safety properties, using different shadow domains.
We illustrate our approach first for memory safety (more precisely, array bounds
checks), and then show how two other, less typical safety policies can be encoded.



3.1 Memory Safety

For memory safety, we need to extend our language L0 by simple arrays; here,
we restrict ourselves to one-dimensional arrays with a fixed lower bound of zero
to simplify the presentation. Figure 7 shows the syntax of the extended language
L1. As usual, we add array updates to the commands and array selects to the
expressions. However, we also require explicit array declarations of the form
var x[n], which declares an n-element array x.5

Cmd ::= . . . Expr ::= . . .
| Var[Expr] := Expr | Var[Expr]
| Decl

Decl ::= varVar
| varVar[Const]

Fig. 7. Syntax of extended while-language L1

For memory safety, the shadow environment needs to record the size of each
array; we thus have η : Var ⇀ IN . Eventually, the shadow variables get their
values from the declarations. This differs from the usual approach where the
array bounds are represented by an extra function high(x) on the logical level.

Since we now have two environments, we have to slightly extend some parts
of our machinery. This includes interpretations, the operational semantics, and
the safety judgements. For interpretations, the only difference is in the case of
variables, which need to be taken from the correct environment:

[[x]]η,η = η(x)
[[xhi]]η,η = η(xhi)

In the operational semantics, the only case interesting for memory safety is
the array declaration; all other constructs leave the shadow environment un-
changed.6

〈var x, η, η〉 ⇒ 〈skip, η, η〉
〈var x[n], η, η〉 ⇒ 〈skip, η, η ⊕ {xhi 7→ [[n]]η,η〉
〈x[e1] := e2, η, η〉 ⇒ 〈skip, η ⊕ {x 7→ (x⊕ {[[e1]]η,η 7→ [[e2]]η,η})}, η〉
〈c, η, η〉 ⇒ 〈c′, η′, η〉, if 〈c, η〉 ⇒ 〈c′, η′〉

As in the stateless case, we can then define the safety judgement for memory
safety. Figure 8 shows both judgements for expressions and commands.

5 For consistency, we also add scalar declarations var x.
6 We also need to specify how array selection and updates are modeled; however, this

is a consequence of extending the language and is independent of any certification
issues. Here, we model arrays as maps from naturals to values; hence: [[x[e]]]η,η =
(η(x))([[e]]η,η)



η, η � c safemem

η, η � x safemem

η, η � x[e] safemem iff 0 ≤ [[e]]η,η < η(xhi) and η, η � e safemem

η, η � e1 op e2 safemem iff η, η � e1 safemem and η, η � e2 safemem

η, η � var x safestatemem

η, η � varx[n] safestatemem

η, η � skip safestatemem

η, η � e1 := e2 safestatemem iff η, η � e1 safemem and η, η � e2 safemem

η, η � if b then c safestatemem iff η � b safemem

η, η � while b do c safestatemem iff η, η � b safemem

η, η � c1;c2 safestatemem iff η, η � c1 safestatemem

η, η � c safemem iff ∀〈c, η, η〉 ⇒∗ 〈c′, η′, η; 〉 · η′, η; � c′ safestatemem

Fig. 8. L1 memory safety

Again following the schema developed for the stateless case, we then formu-
late the Hoare rules of the safety policy, as shown in Figure 9; we have omitted
the rules (skip), (comp), and (cons) which remain unchanged. In the rules (as-
sign), (if ), and (while), the safety predicate is changed. The (update)-rule is an
appropriately modified version of McCarthy’s original rule.

(decl)
Q {var x} Q

(adecl)
Q[n/xhi] {var x[n]} Q

(assign)
Q[e/x] ∧ safemem(e) {x := e} Q

(update)
Q[update(x, e1, e2)/x] ∧ safemem(x[e1]) ∧ safemem(e2) {x[e1] := e2} Q

(if )
P ⇒ safemem(b) b ∧ P {c} Q ¬b ∧ P ⇒ Q

P {if b then c} Q

(while)
P ⇒ safemem(b) b ∧ P {c} P

P {while b do c} ¬b ∧ P

Fig. 9. Hoare rules for L1 memory safety

The lemmas and theorems of the previous section hold in a suitably modified
form. The main change is to modify the expansions of wspc. The key cases are

wspc(var x[n], Q) ⇐⇒ Q[0/xhi]
wspc(x[e1] := e2, Q) ⇐⇒ Q[update(x, e1, e2)/x] ∧ safemem(x[e1]) ∧ safemem(e2)



safemem(e) =


true if e ∈ Var or e ∈ Const
safemem(e1) ∧ 0 ≤ e1 < xhi if e ≡ x[e1]

safemem(e1) ∧ safemem(e2) if e ≡ e1 mem e2, op ∈ {*, /, +, -, =}

Fig. 10. Safety formula for L1 memory safety

3.2 Memory Write Limits

Next, we consider a safety policy which limits the number of times values can be
written into each memory location. Obviously, this is undecidable in general, but
with appropriate annotations (i.e., loop invariants) it can still be very helpful.
Such a policy can then be used to ensure that the physical limitations of non-
volatile memory, as for example used in spacecraft, are not exceeded.

We formalize this using shadow variables xwl which are initialized with zero
when x is declared and incremented each time it is assigned to. As in the case
of memory safety, the abstract environments map the variables to naturals, η :
Var ⇀ IN . However, unlike in the case of memory safety, we now need (i)
shadow variables for scalars as well, and (ii) a separate shadow variable for each
element of an array. While the first point is straightforward to deal with, the
second seems at first more complicated. However, by just introducing a complete
shadow array, we get around all problems. In the operational semantics we then
see a nice symmetry between the operations on the original value environment
and on the shadow environment:

〈var x, η, η〉 ⇒ 〈skip, η, η ⊕ {xwl 7→ 0}〉
〈varx[n], η, η〉 ⇒ 〈skip, η, η ⊕ {xwl 7→ λi · 0}〉
〈x := e, η, η〉 ⇒ 〈skip, η ⊕ {x 7→ [[e]]η}, η ⊕ {xwl 7→ η(xwl) + 1}〉
〈x[e1] := e2, η, η〉 ⇒ 〈skip,

η ⊕ {x 7→ (x⊕ {[[e1]]η,η 7→ [[e2]]η,η})},
η ⊕ {xwl 7→ (xwl ⊕ {[[e1]]η,η 7→ xwl([[e1]]η,η) + 1})}
〉

〈c, η, η〉 ⇒ 〈c′, η′, η〉, if 〈c, η〉 ⇒ 〈c′, η′〉

The safety judgement safewl obviously only needs to look at assignments; it
just checks that the assignment counts are still below a fixed upper limit Maxwr.
Since safety reduction holds trivially, we formulate safewl directly and not via
safestate.

η, η � x := e safewl iff η(xwl) < Maxwr

η, η � x[e1] := e2 safewl iff (η(xwl))([[e1]]η,η) < Maxwr

Finally, we formulate the Hoare rules (cf. Figure 11); again, the only interest-
ing cases are declarations and assignments. We thus omit an explicit definition of
the safety formula and inline it instead. Note that we extend the logic for arrays
by the construct init(x, n, k) which denotes the array x of size n where every
element is set to k. For this, we need the axiom i < n ⇒ (init(x, n, k))(i) = k
in the domain theory of the underlying logic (not shown here).



(decl)
Q[0/xwl] {var x} Q

(adecl)
Q[init(xwl, n, 0)/xwl] {varx[n]} Q

(assign)
Q[e/x, (xwl + 1)/xwl] ∧ xwl < Maxwr {x := e} Q

(update)
Q[update(x, e1, e2)/x, update(xwl, e1, xwl[e1] + 1)/xwl] ∧ xwl[e1] < Maxwr {x[e1] := e2} Q

Fig. 11. Hoare rules for L1 write limits

Again, we can show that the system is sound and complete with respect to
the corresponding semantics. The proofs follow the outline in Section 2.

3.3 Memory Read Limits

The final safety policy we consider in this paper limits the number of times
memory locations can be read. Intuitively, this is the dual of the write limit
policy considered above; formally, however, it is quite different. The reason for
the difference (and the source of additional complexity) is that the updates of
the shadow environment are now much less localized: the evaluation of each
expression can potentially change the shadow environment. This problem is not
restricted to read limits but occurs whenever expression evaluation can have side
effects, either in the original environment, or in the shadow environment.

To simplify our notation we define a shadow environment update function
upd : Env × Env × Expr → Env which examines the expression and adds the
correct number of occurrences to the shadow environment; the notation y ∈n e
denotes that there are n occurrences of the variable y in e:

upd(η, η, e) = η ⊕ {xrl 7→ η(xrl) + n | x ∈n e}
⊕ {xrl 7→ xrl ⊕ {[[e′]]η,η 7→ xrl([[e

′]]η,η) + n} | x[e′] ∈n e}

We can then formulate the operational semantics concisely; the omitted cases
follow easily.

〈var x, η, η〉 ⇒ 〈skip, η, η ⊕ {xrl 7→ 0}〉
〈varx[n], η, η〉 ⇒ 〈skip, η, η ⊕ {xrl 7→ λi · 0}〉
〈x := e, η, η〉 ⇒ 〈skip, η ⊕ {x 7→ [[e]]η}, upd(η, η, e)〉
〈x[e1] := e2, η, η〉 ⇒ 〈skip,

η ⊕ {x 7→ (x⊕ {[[e1]]η,η 7→ [[e2]]η,η})},
upd(η, upd(η, η, e1), e2)
〉

〈if b then c, η, η〉 ⇒ 〈c, η, upd(η, η, b)〉 if [[b]]η,η = true
〈if b then c, η, η〉 ⇒ 〈skip, η, upd(η, η, b)〉 if [[b]]η,η = false

In effect, we can give the semantics in terms of the basic underlying semantics
and the update function on the shadow environments: if 〈c, η〉 ⇒ 〈c′, η′〉, then



〈c, η, η〉 ⇒ 〈c′, η′, upd(η, η′, e)〉 for all immediate subexpressions e of c. We can
also apply the same idea to the Hoare rules. Instead of an update function which
is applied to the shadow environment we need an update substitution Sub(e)
which is applied to the precondition; it is defined in the same way as the update
function:

Sub(e) = [xrl + n/xrl | x ∈n e] ∪ [update(xrl, e
′, xrl[e] + n)/x | xrl[e

′
] ∈n e]

We then define the safety formula saferl(e) in the same way: it checks that
the occurrences in e do not exceed the limit Maxrl:

saferl(e) =
∧

x∈ne

xrl + n ≤ Maxrl ∧
∧

x[e′]∈ne

xrl[e
′
] + n ≤ Maxrl

The safety judgements are similar to those for write limits. With this, we
have all pieces in place to formulate the Hoare rules. We only give a single rule
for the if-statement; the other rules follow the same schema.

(if )
P ⇒ saferl(b) b ∧ P {c} Q ¬b ∧ P ⇒ Q

Sub(b)(P ) {if b then c} Q

4 Automatic Derivation of Safety Policies

We now generalize the idea from Section 3.3 and derive a general way of formu-
lating safety extensions to an operational semantics and Hoare logic, respectively,
such that the results of the previous sections are preserved. The main idea is
to develop a notion of compositional safety property, which then allows us to
augment the Hoare rules in a similarly compositional manner.

We have seen that abstract environments describe how programs compute the
abstract properties we are interested in for a given safety property. In order to
reason about such properties in a safety policy, we need a notion of expressivity
to relate environments to the logic.

Definition 4. We say that a command c ∈ Cmd is operationally expressive, if
whenever 〈c, η, η̄〉 ⇒ 〈c, η′, η̄′〉, then for all x ∈ (η′∪η̄′), there exists an expression
e, such that [[e]]η,η̄ = [[x]]η′,η̄′ .

This formalises the idea that whatever change a command makes to the
environments can be expressed in terms of substitutions. Clearly, the expression
can only contain variables from the original environments.

We use the notation Subθ(P ) to denote the substitution, applied to P , which
expresses the change in environments effected by command type θ. We are im-
plicitly assuming particularly simple changes to the environment which can al-
ways be expressed this way, but this accounts for all our examples. For example,
Subassign(P ) is simply P [e/x] for the assignment x := e.



In general, each command has its own notion of safety. However, we want to
exclude pathological examples of safety properties, so we consider, now, what
sort of properties are acceptable.

For atomic commands, we allow an arbitrary condition on the environments
and the component expressions. For example, the safety of the assignment x := e
can be any condition on x and e. We can express this as a predicate P ⊆
Env × Env × Expr × Expr .

For compound commands, the key idea is that the basic data of a safety
property consists of arbitrary predicates, Cond, on the immediately accessible
subexpressions for each command. We will write η, η � Cond(e1, . . . , en) to mean
〈η, η, e1, . . . , en〉 ∈ Cond.

Definition 5. A safety property on commands is compositional, if there exist
predicates Condθ, θ ∈ {assign, if, while}, with the following properties:

– η, η � var x safe iff η, η � Conddecl(x)
– η, η � var x[n] safe iff η, η � Condadecl(x, n)
– η, η̄ � x := e safe iff η, η̄ � Condassign(x, e)
– η, η̄ � x[e1] := e2 safe iff η, η̄ � Condupdate(x, e1, e2)
– η, η � skip safe
– η, η � if b then c safe iff Condif(b) and [[b]]η,η = true implies η, η � c safe
– η, η � while b do c safe iff η, η � Condwhile(b) and 〈c, η, η〉 ⇓ 〈η′, η̄′〉 implies

η′, η̄′ � while b do c safe

For sequential composition, the safety of c1; c2 is defined as before. Although
this looks fairly similar to Figure 4 it generalises it by allowing arbitrary con-
ditions on the expressions. Stateless safety follows as the special case where
η, η � Condθ(e1, . . . , en) iff η, η � ei safe, for each i.

This notion of compositionality maintains the correspondence between safe
and safestate, while allowing that safety of a command is arbitrarily expressed
in terms of the safety of its subcommands.

Now it should come as no surprise that we require the condition predicates
to be expressible.

Definition 6. We say that the n-ary predicate, P , is expressible when there
exists formulas φ such that

〈e1, . . . , en〉 ∈ P iff η, η � φ(e1, . . . , en).

Finally, we are in a position to state a general completeness theorem, which
generalises the theory of stateless safety developed in Section 2. We omit the
details of the proof here and just state the theorem; the proof structure is the
same as for the stateless case, making use of expressivity where appropriate.

Theorem 3. Given ( i) a set, Val (the shadow domain), ( ii) an operational
semantics, 〈c, η, η̄〉 ⇒ 〈c, η′, η̄′〉, and ( iii) a compositional safety property, such



that expressivity (operational, predicate, commands and expressions) holds, the
following system is sound and complete with respect to the safety property:

(decl)
Subdecl(Q) ∧ Conddecl(x) {var x} Q

(adecl)
Subadecl(Q) ∧ Conddecl(x, n) {varx[n]} Q

(assign)
Subassign(Q) ∧ Condassign(x, e) {x := e} Q

(update)
Subupdate(Q) ∧ Condupdate(x, e1, e2) {x[e1] := e2} Q

(if )
P ⇒ Condif(b) b ∧ P {c} Q ¬b ∧ P ⇒ Q

Subif(P ) {if b then c} Q

(while)
P ⇒ Condwhile(b) b ∧ P {c} P

Subwhile(P ) {while b do c} Q

(with the rules (skip) and (cons) as before).

5 Related Work

A number of different techniques have been applied to program certification.
The following list is certainly not exhaustive; we focus on static techniques and
leave out all dynamic techniques like runtime monitoring [6].

Certification tools based on static analysis are already commercially available,
e.g., PolySpace [15], which uses abstract interpretation and constraint solving
techniques to identify possible runtime errors. However, such tools usually have
fixed built-in notions of safety and suffer from a high number of false positives.

Other approaches use expressive type systems to enforce safety policies. Rittri
[17] and Kennedy [8] have extended type inference techniques to ensure the
consistent use of physical dimensions in functional programs. However, both
approaches exploit certain algebraic properties of dimensions and it is unclear
how general they are. Xi and Pfenning [21] have used dependent types to show
array bounds safety, again for functional programs. Using similar ideas, Walker
[19] has developed a type system to express and enforce a number of security
policies. Shankar et al. [18] have used type qualifiers [4] to detect vulnerabilities
due to C’s format strings. Their tainted and untainted qualifiers take the same
role as the values in our shadow domains. In general, type-based approaches tend
to scale better, although it is unclear when a specific expressive type inference
algorithm becomes intractable in practice. Unlike the shadow variables, however,
inferred types are static, i.e., the abstract value associated with a program cannot
change during execution. Moreover, structured collections like arrays are usually
modeled using a single type to keep inference tractable; this makes the analysis
necessarily less precise. Experiments are thus required to compare the effects
and trade-offs of the different approaches in practice.



Traditionally, program verification concentrates on showing full functional
equivalence between specifications and programs. This is true especially for in-
tegrated development/proof environments as for example the KIV system [16].
However, Hoare-style verification has also been used in property-oriented certi-
fication as we investigate it here. Extended static checking (ESC) [9, 5] can be
thought of as an “inference-based debugger”: it uses Hoare rules, supported by
program annotations, to detect a variety of potential errors, including division-
by-zero and array-bounds violations. The more annotations the program con-
tains, the more errors ESC can detect. Similarly, the SPARK Examiner [1] is a
tool which uses Hoare rules to show exception freedom of Ada programs; this cor-
responds to a safety policy which combines more elaborate versions of operator
safety (i.e., division-by-zero and overflow) and memory safety (i.e., array-bounds
violations and overflow).7 However, none of the systems deal with the question
of correctness of their respective safety policies. Also, they typically only deal
with one specific policy, whereas our framework is general.

6 Conclusions and Future Work

In this paper we have formalised a selection of safety properties using Hoare
logic, and shown that they are sound and complete with respect to a semantic
notion of safety. We have developed a generic method of doing this for arbitrary
safety properties, thus showing how a safety policy can be automatically derived
from a safety property and an operational semantics. The principle difficulty has
been finding a general definition of safety property which enables this automatic
derivation.

The rules we have presented show that safety rules can be quite complicated,
even when dealing with a single policy at a time. The semantic framework devel-
oped in this paper serves as a structuring mechanism to deal with such complex-
ity. The modularization of safety policies is a difficult problem but the present
theory should serve as a starting point.

We are currently using this theory as the basis for the implementation of a
VCG which is parametric with respect to a safety policy, and we are looking at
a wide range of safety properties. Direct application of the theory should lead
to a modular implementation.

The simple while-language studied here is sufficient for this because our aim
is to certify synthesised code, and so we can control the language subset under
consideration. Moreover, since we can generate loop invariants along with the
synthesised code our safety logic need not be concerned with this.

On a theoretical side, we believe that the logical nature of Definition 5 points
to some interesting connections to the theory of computation, and we are cur-
rently investigating this.

7 Note that overflows can result from arithmetic operations as well as from inconsistent
use of derived types (i.e., subtypes) and thus influence both operator safety and
memory safety.
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